Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer.

نویسندگان

  • Takeshi Shimamura
  • Zhao Chen
  • Margaret Soucheray
  • Julian Carretero
  • Eiki Kikuchi
  • Jeremy H Tchaicha
  • Yandi Gao
  • Katherine A Cheng
  • Travis J Cohoon
  • Jun Qi
  • Esra Akbay
  • Alec C Kimmelman
  • Andrew L Kung
  • James E Bradner
  • Kwok-Kin Wong
چکیده

PURPOSE Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that bromodomain and extra-terminal (BET) bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven non-small cell lung cancer (NSCLC) with BET inhibition. EXPERIMENTAL DESIGN We performed functional assays to evaluate the effects of JQ1 in genetically defined NSCLC cell lines harboring KRAS and/or LKB1 mutations. Furthermore, we evaluated JQ1 in transgenic mouse lung cancer models expressing mutant kras or concurrent mutant kras and lkb1. Effects of bromodomain inhibition on transcriptional pathways were explored and validated by expression analysis. RESULTS Although JQ1 is broadly active in NSCLC cells, activity of JQ1 in mutant KRAS NSCLC is abrogated by concurrent alteration or genetic knockdown of LKB1. In sensitive NSCLC models, JQ1 treatment results in the coordinate downregulation of the MYC-dependent transcriptional program. We found that JQ1 treatment produces significant tumor regression in mutant kras mice. As predicted, tumors from mutant kras and lkb1 mice did not respond to JQ1. CONCLUSION Bromodomain inhibition comprises a promising therapeutic strategy for KRAS-mutant NSCLC with wild-type LKB1, via inhibition of MYC function. Clinical studies of BET bromodomain inhibitors in aggressive NSCLC will be actively pursued. Clin Cancer Res; 19(22); 6183-92. ©2013 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Therapy: Preclinical Efficacy of BET Bromodomain Inhibition in Kras-Mutant Non–Small Cell Lung Cancer

Purpose: Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency ofmutantKras tumors onMYC function.Unfortunately, drug-like small-molecule inhibitors ...

متن کامل

Mutational status of TP53 defines the efficacy of Wee1 inhibitor AZD1775 in KRAS-mutant non-small cell lung cancer

KRAS is frequently mutated in non-small cell lung cancer (NSCLC). However, direct targeting of KRAS has proven to be challenging, and inhibition of KRAS effectors has resulted in limited clinical efficacy. Wee1 kinase is an important regulator of the G2 checkpoint and is overexpressed in various cancers. Inhibition of Wee1 exerts anticancer effects as a monotherapy or in combination with DNA-da...

متن کامل

Inhibition of miR-22 enhanced the efficacy of icotinib plus pemetrexed in a rat model of non-small cell lung cancer

Objective(s): To investigate the role of miR-22 in the efficacy of combined icotinib (BPI-2009H) and pemetrexed (LY-231514) on tumor growth and apoptosis in rats with non-small cell lung cancer (NSCLC).Materials and Methods: Rats were injected with HCC827 cells, which were transfected with anti-miR-22, followed by the treatment of BPI-20...

متن کامل

Combined targeting of EGFR/HER promotes anti-tumor efficacy in subsets of KRAS mutant lung cancer resistant to single EGFR blockade

KRAS is a frequently mutated oncogene in lung cancer and among the most refractory to EGFR targeted therapy. Recently, preclinical evidence in pancreatic cancer has demonstrated that mutant KRAS can be regulated by EGFR. However, the distinct correlation between the EGFR/HER family members and mutant KRAS has not been investigated. Here, we show that non-small cell lung cancer cell lines harbor...

متن کامل

Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer

KRAS is frequently mutated in a variety of cancers including lung cancer. Whereas the mitogen-activated protein kinase (MAPK) is a well-known effector pathway of KRAS, blocking this pathway with MEK inhibitors is relatively ineffective. One major contributor to limited efficacy is attributed to the reactivation of MAPK signal following MEK inhibition by multiple feedback mechanisms. In a recent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 19 22  شماره 

صفحات  -

تاریخ انتشار 2013